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Abstract-New experimental measurements are reported on the natural convective heat transport through 
a horizontal layer of air, covering the Rayleigh number range from sub-critical to 4 x 106. When these 
data are combined with Goldstein and Chu’s data for air, the full set of data points are demonstrated 
to bear a Nusselt number dependence which is asymptotic to a l/3 power on the Rayleigh number as the 
Rayleigh number approaches inhnity. The asymptotic coefficient of proportionality is consistent with that 
predicted by a simple “conduction layer model” which is described. Knowledge of the asymptote has 
permitted a simple but accurate correlation equation to be obtained, valid for the full range of Rayleigh 

number. By extension, a similar correlation equation is also obtained for water. 

NOMENCLATURE 

constant in equation (2) [dimensionless]; 
depth of fluid layer [ml; 
acceleration of gravity [m/s2]; 
convective heat-transfer coefficient, across 
fluid layer [W/m’K]; 
thermal conductivity of fluid [W/m K]; 
Nusselt number, = hd/k [dimensionless]; 
Prandtl number, = v/u; 

Rayleigh number, = ga(T1 - r,)d3 
VU 

[dimensionless] ; 

T,, T,, temperature of lower and upper plate 
respectively [K]; 

ATBL, temperature difference across boundary 
layer [K]. 

Greek symbols 

thermal diffusivity of fluid [m’/s]; 
thermal expansion coefficient of fluid [K- ‘I; 
conduction thickness of boundary layer [ml; 
kinematic viscosity of fluid [m*/s]; 
angle of tilt of surface from horizontal 

[d-4. 

INTRODUCTION 

THE CONVECTIVE motion and heat transfer occurring 
in a horizontal layer of fluid heated from below has 
been the subject of a large number of investigations 
in recent years, the subject having been recently 
reviewed by Plate [l]. For Rayleigh numbers less than 
a critical value of 1708 it is well known that the fluid 
layer is stagnant and the Nusselt number is unity. At 
Rayleigh numbers slightly greater than critical, the fluid 
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flow consists of steady rolls. Subsequent increases in the 
Rayleigh number produces flows of increasing com- 
plexity, the exact nature of the flow pattern depending 
on the Prandtl number. Thus the transition to time- 
unsteady Ilow varies from Ra N 5500 for Pr = 0.7 to 
Ra N 55000 for Pr = 8500 [2]. For Rayleigh number 
greater than about lo6 the structure of the flow is 
generally considered to be fully turbulent. 

Measurements of the fluid temperature profile at high 
Rayleigh number shows a boundary-layer type struc- 
ture, there being a nearly isothermal inner core with 
high temperature gradients close to the boundary 
surfaces. A surprising observation resulting from the 
measurements on water is a reversal in the temperature 
gradient in the inner core [3]. In observing the flow 
structure at high Rayleigh number with water, 
Goldstein and Chu [3] noted the existence of 
“thermals” (buoyancy-driven masses of fluid moving 
away from the boundary surfaces); and “stable blobs” 
(coalesced thermals which have reached the opposite 
boundary). It appears that the “thermal blobs” are the 
explanation of the reversed temperature gradient. 
Neither of these phenomena was observed when those 
authors performed similar studies on air [4]. 

Correlation equations for the heat transfer across the 
layer covering the full Rayleigh and Prandtl number 
range were last given in 1960 by OToole and Silveston 
[5]. Using all data available at that time these authors 
divided the flow into three Rayleigh number regions: 
initial (1700 < Ra < 3500); laminar (3500 < Ra < 105) 

and turbulent (lo5 < Ra < lo’), and gave correlation 
equations for each range. Only in the turbulent region 
was the Nusselt number found to be Prandtl-number 
dependent. Consequently their equations for Nu have a 
discontinuity at Ra = 10’. Since their study, a number 
of measurements of heat transfer have been reported, 
principally by Rossby [6], Goldstein and Chu [3], [4], 
Garon and Goldstein [7], Willis and Deardorff [8] 
and Krishnamurti [9], [2]. (Some of these studies, 
particularly the last two, were more concerned with the 
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FIG. 1. Experimental data and correlation equations 
for air. 

transition in the heat-transfer curves, than in the 
absolute value of the Nusselt number.) There have also 
been considerable developments in theory, some of 
which are predictive of the heat-transfer rates. In 
particular, the equation of Malkus and Veronis [lo] : 

Nu= 1+144 1-g 
( ! 

successfully predicts the heat transfer in the steady roll 
region near the point of instability [ll] (i.e. up to about 
Ra ‘v 5500); and the “independent mode” theory of 
Malkus and Veronis [lo] as refined by Catton [12], 
appears to fit the data for liquids up to Rayleigh 
numbers of about 105. 

The asymptotic behaviour of the Nusselt number as 
the Rayleigh number approaches infinity remains an 
unresolved problem. In an important paper, Malkus 
[13] in 1954, treated this asymptotic behaviour by 
maximizing the heat-transfer subject to two assumed 
constraints, and obtained: Nu cc Ra’j3. Later Herring 
[14], [15], using a numerical solution of the governing 
equations, but neglecting the non-linear interaction 
terms, also obtained the result Nu cc Ra113. 

Experimental studies however have not always borne 
out the Ra’i3 dependence at high Rayleigh number. 
Although Globe and Dropkin [16] found a l/3 power 
dependence, O’Toole and Silveston [5] found Nu cc 
Ra0’305 in their turbulent region. Rossby [6] reported 
different power laws for different Prandtl numbers, 
the index on the Rayleigh number ranging from 0.281 
for silicone to 0.257 for mercury (Pr N 0.025). Recently 
Goldstein and Chu [3,4] on the basis of careful experi- 
ments and a large number of data points in the high 
Rayleigh number range (lo6 to 108) obtained: Nucc 
Ra0’2g4 for air and Nu cc Ra0’278 for water. On the 
basis of observing nearly twice the standard deviation 
of their data if they assumed a l/3 power on the 
Rayleigh number, they concluded that “the l/3 power 
law predicted by many theoretical analyses does not 
apply to the present experiments.” 

The present article presents some new experimental 
measurements of the heat transfer with air as the fluid, 
covering the Rayleigh number range from sub-critical 
to 4x 106. When these data are combined with 
Goldstein and Chu’s data for air (which lie in the range 
5 x 10’ to lo*), the resultant total data set is shown to 

be asymptotic to a l/3 power law, the coefficient being 
consistent with that predicted by a “conduction layer 
model”, which is described. This fact permits simple 
correlation equations to be obtained, expressing 
accurately the Nusselt number dependence over the 
full Rayleigh number range. By extension, a similar but 
slightly more complex correlation for water is also 
obtained. 

EXPERIMENT 

The apparatus used in this experiment has been used 
previously to measure the critical Rayleigh number for 
tilted air layers [17] and to determine critical Rayleigh 
numbers and heat transfer in horizontal layers of air 
constrained by a honeycomb structure [18]. It has 
therefore been fully described elsewhere. It consists 
essentially of two parallel copper plates each 56 cm x 
61 cm x 1 cm, the upper one cooled, the lower one 
heated by two separate circulating water streams so as 
to maintain a uniform temperature difference of the 
order of 10 K” between the plates. The heat flow leaving 
the lower plate is determined in the central 13 by 13 cm 
area by means of a nulling system involving a heat 
flux meter and a separate electrically heated plate. The 
plates are inserted in a vacuum (or pressure) vessel in 
which the pressure can be varied from 10 Pa to 700 kPa. 
The provision of varying the air pressure permits 
varying the Rayleigh number over a wide range without 
altering either the plate spacing or the temperature 
difference between the plates. 

Runs were made at nominal plate spacings of 1 .O cm, 
2.5 cm and 3.8 cm and the results in de-dimensionalized 
form are shown plotted in Fig. 1. Generally, if there is 
an overlap between data of different plate spacings, 
that cf the lower spacing is to be taken as the more 
accurate, since in this instance the control area where 
the heat transfer is measured is more representative of 
the total flow structure. 

Measurements of the heat transfer through air layers 
have also been made by Mull and Reiher [19], de Graaf 
and Van der Held [20], Willis and Deardorff [8] and 
Goldstein and Chu [4]. Mull and Reiher’s data points 
are plotted in Fig. 1 and are seen to lie very close to 
the present data. De Graaf and Van der Held are in 
general agreement with the present study but show 
considerably more scatter. The data of Goldstein and 
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FIG. 2. Sketch illustrating conduction layer model. 

Chu, all falling in the high Rayleigh number range, are 
also plotted in Fig. 1. They complement and extend the 
present data. 

Willis and Deardorffs experiment was less aimed 
at the absolute magnitude of the heat transfer than in 
the location of the transition points in the heat-transfer 
curve which were first pointed out by Malkus. The 
present results also show these transition points and 
this can be seen more easily if one follows the results 
for the 3.8cm spacing alone. The location of these 
transition points, determined by replotting the data on 
linear scale in the form NuRa vs Ra and fitting a set of 
straight lines to the results, are consistent with the 
results of Willis and Deardorff. 

CONDUCTION LAYER MODEL 

Two of the authors (Hollands and Raithby [21]) 
have had some success in modelling natural convection 
phenomena by surrounding all rigid boundaries by a 
layer of stagnant fluid (called the conduction layer) and 
considering the heat transfer to be conducted through 
the region. The thickness of the conduction layer is 
such as to offer the same local resistance by conduc 
tion, as the actual boundary layer. In the case of a 
turbulent boundary layer, the thickness is determined 
completely locally. It depends only on the local angle 
of tilt of the surface, the local temperature difference 
across the boundary layer, and the fluid properties. On 
the basis of dimensional analysis the conduction layer 
thickness can be expressed as : 

l/3 1 

‘2s 

where C, is a (weak) function of the Prandtl number. 
A(+) denotes a dependence on the local angle of tilt of 
the bounding surface from the horizontal. In the present 
problem 4 = 0; A(0) is defined as unity. 

The value of C, can be determined by experiments 
conducted on a large single horizontal plate in an 
extensive fluid environment. In this instance equation 
(1) would predict NuL = C, Rai’3. (The length dimen- 
sion, L, representing the plate width, cancels out in this 
instance.) For this problem Fishenden and Saunders 
[22] recommend Nu = @14Ra’/3 for air. Hassen and 
Mohammed [23] recently confirmed this value to 
within 4 per cent. Thus for air (Pr 10.7) C, N 0.14, 

and we shall use this value subsequently. Working 
with water (Pr ‘v 7), Fujii and Imura [24] report a value 
of C, = 013. To the authors’ knowledge, this type of 
experiment has not been performed for higher Prandtl 
number fluids, so that values of C, for these fluids are 
not available. 

Figure 2 shows a sketch of the conduction layer 
model as applied to the present problem. The inner 
core of fluid is assumed to be perfectly mixed with 
eddy diffusion, The anticipated temperature profile 
(except for the small gradient reversal) is approximately 
consistent with that observed, as mentioned in the 
Introduction. Since the temperature drop across each 
conduction layer is one-half of the overall temperature 
difference [i.e. ATBL = $(Ti - TV)] the conduction-layer 
thickness on each surface is: 

The resistance to heat transfer lies in two layers of 
stagnant fluid, both of thickness A,, so that the overall 
heat-transfer coefficient across the layer, h is given by: 

Expressed dimensionally, this heat transfer is: 

(3) 

where C, is taken as 0.14. Clearly it is impossible for 
the Nusselt number to be less than unity so that 
equation (3) cannot apply for Ra < 2’/C: = 5830. This 
condition applies to the point where the two conduc- 
tion layers just touch. For spacings less than this, heat 
is conducted directly across the fluid and Nu = 1. The 
assumption that, if two conduction layers overlap, the 
intermediate fluid can be taken as stagnant, is implicit 
in the conduction layer model [21]. Thus the conduc- 
tion layer model would predict for the present situation 

Nu=l Ra -=c 5830 (4a) 

Nu = 0.0555Ra’13 Ra > 5830. (4b) 

While significant departures from equation (4) may 
be expected at intermediate values of Ra, where it 
would be anticipated that the relatively close proximity 



882 K. G. T. HOLLANDS, G. D. RAITHBY and L. KONIC6.~ 

/vu 

FK;. 3. Comparison of correlation equations with recent experimental data for water. 

of the two boundary layers causes an interaction 
between them, the model would be expected to apply 
in the limit of very large Rayleigh number, i.e. large 
spacing, since in this instance the boundary layers 
should become essentially independent of each other. 
(In the case of laminar boundary layers on concentric 
cylinders and spheres, it has been found [21] that 
there is no measurable variation of the conduction 
layer thickness with spacing even down to (but not 
past) the point where the conduction layers meet.) Since 
it is known that for Ra < 1708, the fluid is stagnant 
and Ntd = 1, equation (4) will also apply exactly for 
Ra 4 1708. 

Equation (4) is plotted in Fig. 1 to permit comparison 
with experiment. As expected, significant departures 
are observed for intermediate Rayleigh numbers. 
However, the data appear to be definitely asymptotic 
in equation 4(b). It would appear then on both 
theoretical and experimental grounds, that equation 
4(b) represents the sought ~ymptotic behaviour of the 
Nusselt number as Ru + GO, at least for air. 

Air 
CORRELATION EQUATIONS 

The manner in which the data approach 4(b) is of 
interest. Inspection of the plot shows that the difference 
in the Nusselt number between the data points and 
equation (4) remains relatively constant at approxi- 
mately 1.5 except for Rayleigh numbers near critical; 
at the critical Rayleigh number the difference is zero. 
The formula for the behaviour of the convective 
Nusselt number in the vicinity of the critical condition, 
given by equation (I), behaves in a very similar manner 
to this difference in Nusselt numbers and hence it is 
useful to represent the Nusselt number by the sum of 
that given by (4) and (1); i.e. by: 

Nu= 1+w[* -gq-+[-$J”3-*1’ (5) 

where a bracket: [ J’ indicates that if the argument 
inside the bracket is negative, the quantity is to be 
taken as zero, Equation (5) is plotted in Fig. 1. It is seen 
to fit the data very closely. It is important to note 
that the single equation (5) correlates the Nusselt 
number ~haviour for the full range of Rayleigh 
number, i.e. from 0 to (presumably) co. 

The conclusion that equation 4(b) represents the 
asymptotic behaviour can now be tested more fully. 
The quantity 

Nu,=Nu-144 

should, according to equation (5), be proportional to 
Rdf3. To test this, a least square fit of the form 
Nu, = CRd was taken on all the data (including 
Goldstein and Chu’s) for which Ra > 70000. The 
“best-fit-value” of the exponent on Ra was n = 0.3329 
~~~74 (95 per cent confidence limits). The best value 
of C was 00580 ~OQ063 (95 per cent confidence 
limits). 

Water 

It is of interest to make a similar compa~son with 
the available data on water. As mentioned earlier, Fujii 
and Imura’s work with water produces nearly the same 
value for C, as dete~in~ from Hassan and Moh~e~s 
results for air. Since equation (1) has been found to hold 
for all Prandtl numbers (except that of mercury), equa- 
tion (5) might be anticipated to hold for water as well 
as air, Figure 3 shows the comparison of equation (5) 
with the combined experimental data of Rossby [6], 
Goldstein and Chu [33, and Garon and Goldstein [7]. 
The agreement is good for large and near critical 
Rayleigh numbers, but is not good at intermediate 
Rayleigh numbers. It has been found possible to reprs 
sent the deviation, ANu, between equation (5) and the 
data, by the function 

&l/3 1 -in(k”“:140) 

ANu = 2.0 -_ 
[ 1 140 

For water then, the Nusselt number dependence on the 
Rayleigh number is expressed by the equation: 

+ 2.0[&‘/3/140][’ -InW”ll4O)l+ (6) 

Equation (6), plotted in Fig. 3 is seen to be a very 
close fit to the experimental data over the full Rayleigh 
number range. (The addition of the ANu term to form 
equation (6) is purely for the purposes of obtaining an 
empirical fit; however, a physical interpretation is given 
in a later section.) 
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The data of Rossby, Goldstein and Chu, and Garon The additional heat transfer of water over air, 
and Goldstein have been chosen for the above fitting characterized by ANu, is roughly centred about the Ra 
of the correlation equation for water since they all show number range (5 x 105-5 x 106) termed “moderate” 
very little scatter and because they compare very by Goldstein and Chu [2]. In this range, thermals are 
favourably with each other in the regions where they most strongly observed in water and one is tempted to 
overlap. However, it could be argued that only selective ascribe the additional heat transfer to thermals since 
data have been for comparison against correlation the existence of thermals was not mentioned in 
equation (6) and therefore that the equation lacks Goldstein and Chu’s study of air layers. That thermals 
universal agreement. A comparison with other (earlier) should be observed with water and not with air 
data for water is shown in Fig. 4. This graph shows indicates that they are Prandtl number dependent and 
all the data for water used in the treatise by OToole in fact this would seem reasonable, since the Prandtl 
and Silveston. This includes that of Globe and Dropkin number is the ratio of momentum to thermal diffu- 
[16], Schmidt and Silveston [26] and Stumpf [27]. The sivities. In a fluid with a high thermal diffusivity (low 
data of Schmidt and Silveston are in very good agree- Prandtl number) packets of fluid leaving the outer edge 
ment with equation [6]; those of Stumpf show greater of the boundary layer will lose heat and take up a 
scatter but on average are in quite good agreement; temperature equal to the surrounds within a much 
those of Globe and Dropkin “cut through” the present shorter distance from its starting point than a fluid with 
correlation equation, putting them in slight disagree- a low thermal diffusivity. Presumably thermals leaving 
ment with other workers. the outer side of the boundary layer in air are dissipated 
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FIG. 4. Comparison of correlation equation (6) with earlier experimental data for water. 

Except for the data of Malkus [26] and Krishnamurti 
[2] which were unavailable, and that of Jakob and 
Gupta [27] which were demonstrated by OToole and 
Silveston [5] to be inapplicable to the present problem, 
Figs. 3 and 4 represent a comparison of equation (6) 
with all published heat-transfer data on water known 
to the authors. 

PHYSICAL INTERPRETATION OF 
CORRELATION EQUATIONS 

It is of interest to attempt to interpret equations (5) 
and (6) in terms of the observed nature of the flow field 
at different Rayleigh numbers. On the basis of these 
equations one might expect a transition at Ra ‘v 5800 
and in fact a transition is observed for air at Ra N 4800 
by Krishnamurti [2] and at 6300 < Ra < 10000 by 
Willis and Deardorff [25]. In both cases the transition 
is to time-dependent flow. Since equation (1) represents 
the heat transfer associated with steady rolls, it is 
tempting to associate the second term in equation (5) 
with a correlation of purely spatial temperature and 
velocity fluctuations, and the third term to a correlation 
of purely temporal fluctuations. It should be noted, 
however, that the observed time-dependent transition 
occurs at a much higher Rayleigh number (N 30 000 
[2,3]) for water. 

before they reach the outer side, whereas those in water 
reach the other side still maintaining some of the 
temperature field in the opposite boundary layer. 
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CORRELATIONS DE TRANSFERT DE CHALEUR EN CONVECTION NATURELLE 
DANS LES COUCHES HORIZONTALES D’AIR ET D’EAU 

RCumb-De nouvelles mesures experimentales sont present&es sur le transfert de chaleur par convection 

naturelle a travers une couche horizontale d’air, recouvrant une zone de nombres de Rayleigh variant 
depuis des valeurs subcritiques jusqu’a 4. IO+. Ces don&es, une fois jointes a c&es de Goldstein et Chu 
pour I’air, on montre que l’ensembte complet des points exp~rimentaux prbente une d&endance du 
nombre de Nusseh au nombre de Rayleigh qui est asympt~tique a une ioi puissance lj3 lorsque le 
nombre de Rayieigh tend vers I’infini. Le coefficient de nronortionnalite asvmntotiaue est en accord avec _ _ * . 
celui obtenu If’aide dun modele simple de “‘couche de conduction” decrit dans &ticle. La connaissance 
de I’asymptote a permis d’obtenir une equation de correlation simple mais precise, valabie dans toute 
la zone de variation du nombre de Rayleigh. Une equation de correlation similaire est &galement obtenue 

par extension pour i’eau. 

KORRELATIONSGLEICHUNGEN FUR DEN WARMEUBERGANG BEI FREIER 
KONVEKTION IN HORIZONTALEN LUFT- UND WASSERSCHICHTEN 

~m~mmenf~ung-Es wird iiher neue Messungen des W~rmetransports bei freier Konvektion in 
horizontalen Luftschichten berichtet. Der erfagte Bereich reicht von unterkritischen Rayleigh-Zahlen 
his zu Ra = 4. 106. Kombiniert mit den Ergebnisse von Goldstein und Chu fitr Luft zeigt sich, dafi die 
Nusselt-Zahi im gesamten Bereich aIs Potenzfunktion der Rayleig~Z~i dargestellt werden kann; der 
Exponent der Rayleigh-Zahl strebt mit wachsender Rayleigh-ZahI asymptotisch dem Wert l/3 zu. Der 
asymptotische Proportionalitatsfaktor stimmt mit dem iiberein, der aus einem einfachen “Schichtleit- 
modell”, das beschrieben wird, errechnet wurde. Die Kenntnis der Asymptote erlaubte die Aufstellung 
einer einfachen, jedoch genauen Korrelationsgleichung fur den gesamten Bereich der Rayleigh-Zahlen. 
Mit Hiffe einer Erweiterung konnte eine ahnliche Kor~lationsgIeichung fiir Wasser aufgestellt werden. 

O~~~~A~~~E Y PABHEHMil JQIri T~ff~OO~MEHA I-II% CBOSO.QHOfi KOHBEK~~~ 
B l-OPM30HTAJIbHbXX CJ’IOllX B03AYXA M BOfibI 

DOTED - ~OOtilrraKYKX HOBble 3KC~epKMeHTaAbHble AaHHble 0 rennoo6~eue CBO60AHO8 KOH- 

beKuset% Yepes rop~3oHTa~b~br~ cnot? BosAyxa n Auanasoae Ybicen Pener 0~ A0~pnTn~~K~x A0 

4 X f@. rip&t 06%enitHeHifM 3TuX AaHHbfX C fE3yRbTaTaMu rOAbAmTet%Ha If qy AnK BO3AyXa IIOKa3aH0, 

YTO nOJlHaR COBOKynHOCTb 3KCnepHMeHTaJTbHbIX TO’ieK XapaKTenK3yeTCSl 3aBACUMOCTbK) YUCJIa 

HyccenbTa OT Yacna Penea, noKa3arenb cTenetin Ko~opofi acnMnToTnYecKn CT~~MHTC~ K l/3, Korea 
‘Incno Penerl npu6nnXaerca K 6‘XKOHWHOCTU. ~CHMnToT~~eCKUil KO3i$&ii@ieHT nponopuaoeanb- 

KOCTU cornacyerca c paccY~TaH~brM 3uaYeuzieM Anr n~ncTaa~enn0~ npocTol ~~Te~o~poaonHo~ 

MOAeAW CJIORS. &faHRe aC~MnTOTb1 tI033OJlNJlO nO~yY~Tb RfWCTOe, NO TOYHOe 06O~~a~~~ 

ypamtenue, ~ofopoe cnpaaeAsrws0 nnrr nonnoro Anana30na wcna PeneR. IloAo6Hoe 06o6marowee 
ynaBHeHne nOAyYen0 TaK)Ke AJUT aO,AbI. 


